Simple, Robust and Optimal Ranking from Pairwise Comparisons
نویسندگان
چکیده
We consider data in the form of pairwise comparisons of n items, with the goal of precisely identifying the top k items for some value of k < n, or alternatively, recovering a ranking of all the items. We analyze the Copeland counting algorithm that ranks the items in order of the number of pairwise comparisons won, and show it has three attractive features: (a) its computational efficiency leads to speed-ups of several orders of magnitude in computation time as compared to prior work; (b) it is robust in that theoretical guarantees impose no conditions on the underlying matrix of pairwise-comparison probabilities, in contrast to some prior work that applies only to the BTL parametric model; and (c) it is an optimal method up to constant factors, meaning that it achieves the information-theoretic limits for recovering the top k-subset. We extend our results to obtain sharp guarantees for approximate recovery under the Hamming distortion metric, and more generally, to any arbitrary error requirement that satisfies a simple and natural monotonicity condition.
منابع مشابه
Active Ranking using Pairwise Comparisons
This paper examines the problem of ranking a collection of objects using pairwise comparisons (rankings of two objects). In general, the ranking of n objects can be identified by standard sorting methods using n log2 n pairwise comparisons. We are interested in natural situations in which relationships among the objects may allow for ranking using far fewer pairwise comparisons. Specifically, w...
متن کاملSerialRank: Spectral Ranking using Seriation
We describe a seriation algorithm for ranking a set of n items given pairwise comparisons between these items. Intuitively, the algorithm assigns similar rankings to items that compare similarly with all others. It does so by constructing a similarity matrix from pairwise comparisons, using seriation methods to reorder this matrix and construct a ranking. We first show that this spectral seriat...
متن کاملApproximate Ranking from Pairwise Comparisons
A common problem in machine learning is to rank a set of n items based on pairwise comparisons. Here ranking refers to partitioning the items into sets of pre-specified sizes according to their scores, which includes identification of the top-k items as the most prominent special case. The score of a given item is defined as the probability that it beats a randomly chosen other item. Finding an...
متن کاملActive Ranking from Pairwise Comparisons and when Parametric Assumptions Don't Help
We consider sequential or active ranking of a set of n items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of pre-specified sizes according to their scores. This notion of ranking includes as special cases the identification of the top-k items and the total...
متن کاملA Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data
There has been much interest recently in the problem of rank aggregation from pairwise data. A natural question that arises is: under what sorts of statistical assumptions do various rank aggregation algorithms converge to an ‘optimal’ ranking? In this paper, we consider this question in a natural setting where pairwise comparisons are drawn randomly and independently from some underlying proba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.08949 شماره
صفحات -
تاریخ انتشار 2015